Nobahar wrote:How do you recycle nuclear waste? You can recycle parts of it for use in irradiating food, or nuclear medicine, but there's still a significant chunk that needs to be disposed of. If the half-time of decay wasn't so long it wouldn't be a problem, but most of the cost is associated with building a nuclear power plant
Here:
There have been proposals for reactors that consume nuclear waste and transmute it to other, less-harmful nuclear waste. In particular, the Integral Fast Reactor was a proposed nuclear reactor with a nuclear fuel cycle that produced no transuranic waste and in fact, could consume transuranic waste. It proceeded as far as large-scale tests but was then canceled by the U.S. Government. Another approach, considered safer but requiring more development, is to dedicate subcritical reactors to the transmutation of the left-over transuranic elements.
An isotope that is found in nuclear waste and that represents a concern in terms of proliferation is Pu-239. The estimated world total of plutonium in the year 2000 was of 1,645 MT, of which 210 MT had been separated by reprocessing. The large stock of plutonium is a result of its production inside uranium-fueled reactors and of the reprocessing of weapons-grade plutonium during the weapons program. An option for getting rid of this plutonium is to use it as a fuel in a traditional Light Water Reactor (LWR). Several fuel types with differing plutonium destruction efficiencies are under study. See Nuclear transmutation.
Transmutation was banned in the United States on April 1977 by President Carter due to the danger of plutonium proliferation,[44] but President Reagan rescinded the ban in 1981.[45] Due to the economic losses and risks, construction of reprocessing plants during this time did not resume. Due to high energy demand, work on the method has continued in the EU. This has resulted in a practical nuclear research reactor called Myrrha in which transmutation is possible. Additionally, a new research program called ACTINET has been started in the EU to make transmutation possible on a large, industrial scale. According to President Bush's Global Nuclear Energy Partnership (GNEP) of 2007, the United States is now actively promoting research on transmutation technologies needed to markedly reduce the problem of nuclear waste treatment.[46]
There have also been theoretical studies involving the use of fusion reactors as so called "actinide burners" where a fusion reactor plasma such as in a tokamak, could be "doped" with a small amount of the "minor" transuranic atoms which would be transmuted (meaning fissioned in the actinide case) to lighter elements upon their successive bombardment by the very high energy neutrons produced by the fusion of deuterium and tritium in the reactor. It was recently found by a study done at MIT, that only 2 or 3 fusion reactors with parameters similar to that of the International Thermonuclear Experimental Reactor (ITER) could transmute the entire annual minor actinide production from all of the light water reactors presently operating in the United States fleet while simultaneously generating approximately 1 gigawatt of power from each reactor[4].
The technology exists and is being developed. The age of steam and coal has passed us by and we need to focus on more scientifically viable means of energy production, not just for this planet but for the next one. If we ever want to start seriously considering building colonies on other celestial bodies we need to move away from fossil fuel dependent energy production because, quite simply, there ain't no air in space.